Table of Contents
CFD Modeling of Turbulent Multiphase Combustion
by
Dr. Sharad N. Pachpute, Ph.D. – IIT Delhi
Modeling the Combustion with Complex Physics and Chemistry
Introduction to Complex Combustion
The basic of combustion is explained in the previous post which comprises many subjects like thermodynamics, heat and mass transfer, chemical kinetics, and turbulent chemistry interaction (TCI). Mixing of air and fuel decided premixed and non-premixed flames. Many industrial problems where combustion comprises many complex physical and chemical processes such as:
- Turbulent mixing of fuel and air
- Heat and mass transfer (multiple species)
- Chemical kinetics associated with different phases
- Phase change (from liquid to vapor) of fuel
- Solid fuel (coal) particle interaction with air or combustible gas
- Formation of char
- Devolatilization of solid fuel (coal)
- Pyrolysis of fuel
- Formation of soot and emissions.
- Formation of ash
Application of Liquid Fuel Combustion
Due to complex physics and chemistry, various CFD models have been developed. The following are some examples of complex combustion.
Thrust Generator for aviation
-
- Multiphase combustion is useful in jet engines, where, fuel injected into the combustion chamber
- Turbojet or turbofan engines are examples of multi-phase combustion
- In space application, fuel and oxidizer are stored in liquid phase with high pressure
- Rocket engine combustion where multi-phase combustion plays significant role due to fuel injection in the combustion chamber
- Liquid jet Combustion for Rocket V2 Engine is shown below



Domestic cooking or heating
-
- In a domestic kerosene stove, fuel evaporates by absorbing heat and mixed with air
- The flame is formed where evaporated fuel and air meet at stoichimetric level
-
- Principle of Liquid Fuel Combustion: phase of liquid fuel is important
Automotive Power Generation
-
- In, the diesel engine fuel is injected into the cylinder. Here, the phase change of diesel from liquid to gas is achieved with the help of injector
- Atomization of droplets is modeled as multi-phase CFD modeling
- Schematic diesel fuel combustion



- Dual Fuel Combustion Engine
- In dual fuel combustion engine, diesel fuel is injected. Hence, understanding of multi-phase combustion is essential



- Dual fuel injection system for power generation



Solid Fuel Combustion
- Wood and coal are used for domestic and power plant generation
- Understanding Solid combustion is essential as it is the most complex combustion phenomenon due to much more complex physical and chemical processes
- The following example shows devolatilization of coal. It results in the formation of volatile matter (hydrocarbon in a gaseous state) and char (hydrocarbon in solid-state)
CFD Modeling of Coal Fired Boiler
Processes for Pulverized Coal Fired Furnace
- With advances in computing power and CFD modeling techniques, computational
- Computational Fluid dynamics (CFD) modeling of coal fired furnace is feasible for scientists and engineers
- Combustion in furnaces is a complex topics of physics and chemistry. Hence, CFD modeling of coal-fired boilers has been topic research for many years
Major physical and chemical processes occur during the burning of pulverized coal particles in a PC coal-fired furnace.
- Fine coal particles are pulverized separately in mills. After that, they are blown into the furnace through burners
- Once the particles enter the furnace, they are heated by hot furnace gases and radiation from the flame, they start to dry when their temperature reaches about100–110 C
- When the particles are heated further up to a certain critical temperature (depending on the coal type and size), devolatilization starts and volatiles are released from the particles
- The products of Devolatilization comprise non-condensable volatiles (light gases), condensable volatiles (tars) . The remaining solid particles generally contain char and minerals
- The volatiles (hydrocarbon) react with oxygen from the combustion air and other oxidants in the combustion chamber ( furnace)
- Finally, char particles react with gases in the furnace, leaving mineral matter and probably a small fraction of unburnt char in the solid particles.
- These particles (ash) and the furnace gas flow through convective heat transfer sections such as superheaters, preheaters, and economizers, exchanging heat with the working fluid (water/steam) in the convective devices.
- Most exhaust gases from boilers comprise CO2, N2, O2, H2O, and small amounts of NOx, SOx, CO, and particulate matter (PM).
- After leaving the convective passes exhaust gases normally go through various air pollution control equipment (NOx and particle control units) before being discharged through the stack.
- A general layout of the Boiler is shown below for a typical pulverized coal-fired sub-critical boiler
- Computational fluid dynamics (CFD) is used for simulating combustion devices connected with fluid flow, heat transfer, and chemical reactions.
- The method uses well-known complex mathematical equations (Conservation of Mass, Momentum, and Energy) which are not enabled to solve in even simple cases without powerful computers. Basic CFD modeling is available on this website which covers basic governing equations and numerical schemes in ANSYS FLUENT and Open FOAM
- With the increasing of computers power, CFD methods found application in mechanical and thermal power engineering.
- CFD is able to obtain more accurate and cost-effective information
- Velocity and temperature of flue gases
- Mixing of fuel and air
- Flame pattern
- PC coal-fired furnace and selection typical CFD sub-models are required to model physical and chemical processes
- As per physics and chemical kinematics of boiler, the various CFD models are selected
- Following are key parameters for the selection of models
- Type of fuel and fuel composition
- Type of burners ( fuel staged or air low NOx staged)
- Configuration of furnace or boiler
- Type of combustion: premixed, non-premixed, partially premixed
-
Available CFD models for Coal combustion
- There are a variety of models for different physics of flow and heat transfer. It is important to select well-trusted validated CFD models.
- Note that none of the CFD models can give correct results unless they are well-validated against experimental or power plant data
- For turbulence, k-e realizable model and DPM multiphase model are widely validated for coal combustion
Steps for Modeling of Coal Combustion
Apart from the selection of turbulence model and enthalpy transport, we have to select the coal combustion as the following ways:
- Fuel (coal) Composition:
- Define fuel composition data based on proximate and ultimate analysis
- Select the Multi-phase model for coal and air combustion:
- The discrete phase model (DPM) coal combustion simulation is commonly used as non-premixed combustion.
- Select the devolatile and char model in the DPM model:
- No gas phase fuel inlets will be included and the sole source of fuel will come from the coal devolatilization and char burnout.
- Set Coal (particle) Injection Properties:
- Particle size
- Particle Distribution
- particle flow rate (kg/s) or velocity (m/s)
- moisture content
- temperature of particle
- Select the Mixture Material:
- Coal-volatile-air
- Select Species Transport (Non-premixed combustion) Model:
- Select the number of volumetric and solid species,
- Select Volumetric and Particle Surface reactions
- Turbulence -Chemistry Interaction
- Coal composition and reaction type
- Set Combustion reactions:
- Set the volumetric and particle surface reactions with reactant or product species
- Select the stoichiometric coefficients
- reaction constants as per the chemical kinetics
- Select Turbulence-Chemistry Interaction Model
- Finite rate rate
- Finite rate /EDC
- Eddy Dissipation Concept (EDC)
- Define the Inlet Properties of Air:
- Select the mass flow rate
- temperature of air
- mass /mole fraction oxygen in the air
- Select the Pollution models:
- Define types of models for Soot formation.
- Select NOx or SOx model:
- Define the pathway Thermal, Prompt or Fuel
- Define fuel stream or reburn species, the equivalent ratio
- Single variable: Temperature or mixture fraction
- Click here: a pollution modeling lecture on CFD modeling of NO, SO, and soot
Devolatilization Model
- The onset of devolatilization is generally set at a particle temperature and is modeled using a single-rate kinetic model
- Governing equation for rate of volatilization is as follows
Char Oxidation Model
- The char oxidation is considered using the diffusion-kinetics limited model
- The gas-phase volatile and CO reactions are modeled using the two-step global mechanism
- In this model, the pseudo volatile molecule is assumed to be released from the solid phase during devolatilization
- The volatile reacts to form carbon monoxide which together with the carbon-monoxide formed during char oxidation, reacts with oxygen to form carbon dioxide
- The gas-phase reaction rates is calculated using the eddy-dissipation finite rate model
- The reaction rates is given as below. Where A and B are model empirical constants.
- A video Tutorial on CFD modeling coal combustion and NOx pollution modeling is presented below. This is a 2D axis-symmetric multiphase coal problem. There are 6 reactions are involved
Heat Transfer Modeling
- The heat transfer to the furnace walls, platen superheater, and final superheater for the case study boiler is mainly due to radiation.
- The radiation transport is generally solved using the Discrete Ordinates Method (DO).
- The gas mixture absorption coefficient was calculated using the domain-based weighted sum of gray gases model (WSGGM) which accounts for the radiation from the tri-atomic gas species CO2 and H O2
- The radiation properties of the particles are set to constant values for the emissivity and scattering factor
Modeling of Slagging or fouling of boiler tubes
CFD Modeling for Different Type of Burners in Coal Fired Boiler
- Using CFD analysis, various results can be presented
Coal combustion Models in ANSYS FLUENT and OpenFOAM
Modeling of Coal Combustion using ANSYS FLUENT
- FLUENT Solver: CFD MODELING OF PULVERIZED COAL COMBUSTION IN AN INDUSTRIAL BURNER
- FLUENT Solver: Simulation of Combustion and Thermal-flow Inside a Petroleum Coke Rotary Calcining Kiln
- FLUENT Paper:R. Laubscher, P. Rousseau, CFD study of pulverized coal-fired boiler evaporator and radiant superheaters at varying loads, Applied Thermal Engineering 160(2019) 114057
Modeling of Multiphase Combustion using OpenFOAM:
- A new steady lagrangian solver which uses ‘coal’ parcels has been implemented: simpleCoalParcelFoam.
- The solver is very similar to the existing transient coalChemistryFoam solver.
- The solver employs a single cloud of coal particles, which can undergo evaporation of any liquid or vapor content and devolatilization to the carrier phase, and surface reactions.
- The carrier phase includes support for turbulence, heat transfer, and combustion modeling.
- The solver is based on the rhoThermoCombustion combustion class and therefore the thermal type must be set to heRhoThermo.
For more detail click here:
Modeling of Liquid Fuel or Spray Combustion
Type of Liquid Fuel Combustion
a) Pool Fire
- A pool fire is a type of diffusion flame where a layer of volatile liquid fuel is evaporating and burning.
- The fuel layer can be either on a horizontal solid substrate or floating on a higher-density liquid, usually water.
- Pool fires are an important scenario in fire safety science, as large amounts of liquid fuels are stored and transported by different industries.
b) Spray Combustion
- Spray combustion is a commonly used method for burning of liquid fuels which are relatively less volatile
- This method is primarily adopted to burn heavy fuel oils
- Major spray regions are shown below: 1) Primary breakup, 2) Secondary breakup
- Diffusion flame due to spray mixing of fuel and air: the following regions are formed
- Air entertainment zone
- Droplet collision and coalescence
- Ignition zone
- Diffusion flame
- Formation of soot and NOx emissions
Fundamentals of Liquid Sprays
- The method of injecting liquid fuel through small holes is called the process of spray formation
- The flow physics of spray formation proves to be extremely complex. However, the analysis of liquid spray formation is carried out either numerically or experimentally
- CFD models are used to get more details of spray combustion with the help of correct multi-phase models
- Details of full cone examples are shown below
- The spray regions are explained in next sections
Spray Regimes
- Diesel engine sprays are generally of the full-cone type
- Classification of spray breakup: 1) Primary break up, 2) secondary break up
a) Primary Break Up
- The primary breakup mechanism is related to the breakup of the intact liquid core
- It can be divided into four regimes: the Rayleigh regime, the first and second wind-induced regimes and the atomization regime.
- For quantitative classification of the primary regimes, the Ohnesorge number Oh is introduced:
- The Ohnesorge diagram represents four primary breakup regimes, and region for diesel injection application indicated
- Based on the relative size of droplet and nozzle, the primary breakup regimes are defined
- Three major regions: 1) Rayleigh regime, 2) Wind-induced regime, 3) Atomization regime
b) Secondary Breakup
- The secondary breakup mechanism deals the breakup of droplets due to aerodynamic forces that are induced by the relative velocity between the droplets and the surrounding gas
- On the gas-liquid interface, instable growth of waves occur, while in the same time surface tension counteracts the disintegration process
- Effect of weber number on break up process
ANSYS FLUENT For Spray Combustion
VOF – DPM spray model
- The VOF -DPM spray model is a new hybrid multi-phase model in FLUENT that will simulate spray processes with the finest details
- In this model, two primary models are well established
- The Volume of Fluid (VOF) model tracks the liquid-gas interface
- The Discrete Phase Model (DPM) is a separate solver to tracks discrete particles suspended in an Eulerian (continuous) phase
- This hybrid model changes from a full VOF to a DPM solution is shown in the picture below.
2) Pressure-Swirl Atomizer Model
- It is also referred to by the gas-turbine community as a simplex atomizer.
- This type of atomizer accelerates the liquid flow through nozzles called as swirl ports into a central swirl chamber
- The swirling liquid pushes against the walls of the swirl chamber and develops a hollow air core.
- It then emerges from the orifice as a thinning sheet, which is unstable, breaking up into ligaments and droplets.
- The pressure-swirl atomizer is very widely used for liquid-fuel combustion in gas turbines, oil furnaces, and direct-injection spark-ignited automobile engines.
- The transition from internal injector flow to fully-developed spray can be divided into three steps: film formation, sheet breakup, and atomization.
- A schematic of how this process is presented as below
- In ANSYS FLUENT, the pressure-swirl atomizer model is called as the Linearized Instability Sheet Atomization (LISA) model of Schmidt et al. [ 308].
- The LISA model is divided into two stages: i) film formation, ii) sheet breakup and atomization
- For more detail refer: FLUENT_Pressure-Swirl Atomizer Model_Theory
3) The Air-Blast/Air-Assist Atomizer Model:
- To accelerate the process of breakup of liquid sheets from an atomizer, an additional air stream is often directed through the atomizer
- The liquid is formed into a sheet by a nozzle, and air is then directed against the sheet to promote atomization.
- This method is called air-assisted atomization or air-blast atomization process which depends on the amount of air and its velocity.
- By adding the external air flow stream past the sheet results in smaller droplets without the air. However, the exact mechanism for this enhanced performance is not well understood, it is considered that the additional air can accelerate the sheet instability
- The air may help disperse the droplets, preventing collisions between them.
- Air-assisted atomization is used in many of the similar applications: pressure-swirl atomization, where especially fine atomization is required.
- The air-blast atomizer model does not contain the sheet formation equations
- The air-blast atomizer model assumes that the sheet breakup is due to short waves
- Click here for more detail:ANSYS_The Air-Blast_Air-Assist Atomizer Model_Theory
Open FOAM for Modeling of Liquid Fuel Combustion
a) Fire FOAM
- Transient solver for fires and turbulent diffusion flames with reacting particle clouds, surface film and pyrolysis modelling
- It considers the evolution of particles, a liquid film on the surface of solid boundaries and the influence of pyrolysis within the framework of a compressible solver able to consider combustion and radiation.
- FireFOAM is used for modelling problems relevant to thermo- and fluid-dynamics and multiphase flow.
- it is able to run simulations using both Large Eddy Simulation (LES) and Reynolds-Averaged Navies-Stokes (RANS) turbulence models
- Fore more detail click here: Wiki_FireFoam_Equation_Solution
b) SprayFOAM
- The FireFOAM solver provide a simulation of Lagrangian sprays Example: sprinkler sprays for fire suspension.
- Application of SprayFOAM: turbulent dispersion, liquid injection, liquid atomization, droplet breakup or evaporation, droplet-wall interaction and surface film.
For more detail click here:
- C. A. Sedano,O. D. López,, A.Ladino and F. Muñoz, Prediction of a Small-Scale Pool Fire with FireFoam, International Journal of Chemical Engineering ,Hindawi (2017)
- T Myres, A. Trouve, A. Marshall, Predicting sprinkler spray dispersion in FireFOAM, Fire Safety Journal (2008) 93-102
- FireFOAM_verification_validation_PDF
Case study on Oil Burner Modeling in ANSYS FLUENT
- Modeling of heavy oil fired is possible and it is presented using ANSYS FLUENT
- Droplets of oil are modeled using the DPM model as the evaporating species. Evaporated oil mixes with surrounding air and heat generation due to combustion is modeled in the source of the energy equation
- The evaporating temperature is 125 °C and boiling point of 340° C
- The viscosity of the oil is 14 centipoise
Modeling of Diesel Combustion
Introduction to Diesel Engine combustion
- In the diesel engine, the air and fuel mixture is ignited by compressing air in the combustion chamber to the point that the air becomes very hot,
- Just after the compression, the air-fuel mixture is injected in at very high pressure.
- The heat from the compressed air ignites the air-fuel mixture
- The Self Ignition Temperature of Diesel is 210°C
- Diesel engine cycle for power generation
-
Operating range of diesel engine cycle



Selection of Models for Diesel Combustion
- Select Turbulence Model:
- The RNG k ε model can be derived using a thorough statistical technique. This model includes the effect of swirl, which is essential for ICE combustion for strong mixing of fuel and air
- Other models can be selected as per the scope of modeling
- Specify the motion of Piston: The motion of the piston is specified as a function of the engine’s crank angle, crank radius, connecting rod length, and engine speed. The piston location is calculated using the user-defined functions (UDF)
- Spray Model:
- Two spray breakup models are available in ANSYS FLUENT, the wave model.
- It models an analogy between an oscillating and distorting droplet and a spring-mass system.
- The distorting droplet effect is considered
- Droplet collision model
- Droplet collision model consider tracking of droplets; for estimating the number of droplet collisions and their outcomes in a computationally efficient manner
- Wall-film model:
- Spraywall interaction is an important part of the mixture formation in diesel engines
- In a DI engine, fuel is injected directly into the combustion chamber, where the spray can impinge upon the piston.
- The modeling of the wall film inside a DI engine is compounded by the occurrence of carbon deposits on the surfaces of the combustion chamber.
- This carbon deposit soaks up the liquid layer.
- It is understood that the carbon deposits adsorb the fuel later in the cycle. The wallfilm model ANSYS FLUENT allows a single constituent liquid drop to impinge upon a boundary surface and form a thin film.
- Interactions during impact with a boundary and the criteria by which the regimes are detached are based on the impact energy and the boiling temperature of the liquid
- Combustion Models:
- Select non-premixed combustion models
- The combustion model is combined with species transport and finite rate chemistry with simplified chemistry reactions to simulate the overall combustion process in a diesel engine.
- This approach is based on the solution of transport equations for species mass fractions.
- The reaction rates that emerge as source terms in the species transport equations are computed from well-known Arrhenius rate expressions.
- Emission Models
Modeling of DI Engine using ANSYS FLUENT
(click here for more details)
- Fluent Diesel Engine Simulatio_PDF
- U. V. Kongr , V. K. Sunnapwar CFD Modeling and Experimental Validation of Combustion in Direct Ignition Engine Fueled with Diesel, Int. J. Applied Eng. Research, Vol.1, 3(2010)
- Mahaer et al., CFD Modeling of Spray Formation in Diesel Engines, Athens J. of Technology and Engineering (2017)
Modeling of DI Engine in Open FOAM
- DieselFOAM is the solver for DI engine combustion modeling
- The dieselFoam solver uses the dieselSpray library to simulate the combustion of diesel spray
- A sprayFoam solver has now been introduced that can simulate flow and combustion in any spray using the lagrangianSpray library and other lagrangian libraries.
- The aachenBomb tutorial, formerly an example case for the dieselFoam solver, has now been set up for sprayFoam to allow comparison between the old and new libraries.
- Meaning of sub-models
-
- atomizationModel: How atomization is treated
- breakupModel: If secondary break up is used
- injectorModel: Which injector model to use
- collisionMode:l Particle – particle interaction
- evaporationModel Which evaporation model to use
- heatTransferModel: Particle heat transfer model
- dispersionModel: If turbulent dispersion is used or not
- dragModel Particle drag model
- wallModel: What happens to particles hitting the walls
Jet Engine Combustion Modeling
Introduction to Combustion in Aircraft Jet Engine
- The combustion chamber is a critical part of the jet engine in any aircraft
- In jet engine, air enters the front intake and is compressed. Then the air is forced into combustion chambers where fuel is sprayed into it, and the mixture of air and fuel is ignited
- These gases exert equal force in all directions, providing forward thrust as they escape to the rear.
- The thrust from one or more engines pushes a plane forward, forcing air past its scientifically shaped wings to create an upward force called lift that powers it into the sky.
- Combustion Chamber in a typical aircraft




- Location of Jet Engine
- For Airbus A380, the jet engine is placed just below of wings to generate thrust
- Rolls -Royce Trent 900 engine includes fans, compressor, combustion chamber and gas turbine



- Schematic of Jet Engine



- General Electric (GE) jet engine has a fan made for composite materials with aerodynamic design



- Cut way of Rolls Royce Combustion chamber is shown below



Basic Principle of Jet Engine Combustion
- In the combustion chamber, fuel is mixed with air to produce the bang, which is responsible for the expansion that forces the air into the turbine.
- Inside the typical commercial jet engine, the fuel burns in the combustion chamber at up to 2000 degrees Celsius.
- Combustion Chamber



- Principle of Jet Engine Combustion and Combustion Zones
![Colors and Grays - by Ler Yon [Infographic]](https://s3.amazonaws.com/user-media.venngage.com/7a5e2e349cf2c3917cd2ed01e867b99d.png)
![Colors and Grays - by Ler Yon [Infographic]](https://s3.amazonaws.com/user-media.venngage.com/7a5e2e349cf2c3917cd2ed01e867b99d.png)
![Colors and Grays - by Ler Yon [Infographic]](https://s3.amazonaws.com/user-media.venngage.com/7a5e2e349cf2c3917cd2ed01e867b99d.png)
Classification Combustion Chamber in Jet Engine
- Early gas turbine engines used a single chamber known as a can-type combustor.
- Today three main configurations of combustion chambers are used in aircraft: can, annular, and cannular (also referred to as can-annular tubo-annular).
- Afterburners are another type of combustor.
CFD Modeling of Jet Engine Combustion
- CFD modeling of jet engine combustion is similar to spray combustion modeling, only additional swirling effects are applied to fuel jet for faster and strong turbulent mixing with air
- Velocity and Temperature contours of the jet engine combustion chamber. CFD results are presented from CSIR -NAL projects
(a) velocity contours



(b) Temperature contours
Modeling of Afterburner of Jet Engine
- Afterburners are widely used in modern fighter jets to produce additional thrust by burning some fuel in the exhaust nozzles just after the turbines
- Afterburners provide additional power during quick take-off
Working principle of afterburner
- The following figures show how afterburner combustion is carried out in the nozzle by injecting fuels
- Cooling channels are provided to avoid overheating of exhaust nozzles and to maintain structural strength
- The exhaust nozzle can be 2D or 3D thrust vectoring in order to make the fighter jet more agile
- Principle of Afterburner combustion in a jet engine
- Afterburner with thrust vectoring nozzle
- The exhaust gas nozzle angle can be shifted as per the maneuverability of fighter jet
- The nozzle can rotate 36o degrees about its axis and the thrust vector is 3D



CFD Modeling of afterburner
- Combustion Model: The phenomenon of afterburner modeled as turbulent diffusion (non-premixed) combustion using the PDF approach (mean mixture fraction and its variance)
- Turbulence Model: the flow through the afterburner has a swirling component, hence RNG k-e turbulence model is used
- CFD results of afterburner combustion for thrust vectoring nozzle
(a) Velocity contours

(b) Temperature contour

Summary
- Physical understanding of turbulent multiphase combustion is complex due to turbulent flow, phase change or interaction of particles, unclear chemical kinetics due to pyrolysis of solid fuels, combined convective and radiative heat transfer from flue gases containing water vapor and carbon dia-oxide, etc.
- Numerical modeling of turbulent multiphase combustion is possible using commercial and open-source CFD solvers. The combustion models need to be well validated against power plant data for the heat absorption rate of boiler components to optimize the performance of burners.
References
Click here for more details
Books:
- Kenneth K. Kuo, Ragini Acharya, Fundamentals of Turbulent and Multiphase Combustion, Wiley Pub., 2012
- Alan Williams, The Combustion of Liquid Fuel Sprays , Butterworth-Heinemann Ltd (1 March 1990)
- Kenneth K. Kuo, Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, AIAA (1996)
- Lakshmi, P. A., Aghav, Yogesh V., Modeling Diesel Combustion, Springer (2010)
Research Article:
- A. Kourmatzisa,∗ , P.X. Phama , A.R. Masr , Characterization of atomization and combustion in moderately dense turbulent spray flames 1, Elsevier
- Refer : International Journal of Spray and Combustion Dynamics
- Masayuki Taniguchi,Fundamental Experiments of Coal Ignition for Engineering Design of Coal Power Plants,Zhao F. Tian, Peter J. Witt, Mark P. Schwarz, and William Yang, Numerical_Modelling_of_Pulverised_Coal_Combustion, Springer (2016)
- Masayuki Taniguchi,Fundamental Experiments of Coal Ignition for Engineering Design of Coal Power Plants, Zhao F. Tian, Peter J. Witt, Mark P. Schwarz, and William Yang, Numerical_Modelling_of_Pulverised_Coal_Combustion, Springer (2016)
For more detail : NPTEL_Video_Spray Theory and Applications by Prof. Mahesh Panchagnula
Nice work dear Sharad. It is more useful to under graduates and Post-graduates to get quick revision of basic studies with nice pictures. Best Wishes for your time and efforts.
Thanks for your valuable comments